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Abstrad Spontaneous uimerization of the one-dimensional spin-i Heisenkrg.biquadmtic 
model is discussed in terms of a valence-bond (a) analysis. A spin-wave theory based on 
a simple trimer VB state is developed and applied to the model. Within the theory a self. 
consisten1 picture is oblained. the system is trimerized for an extended region of couplings, 
with a non-zem energy gap that collapses at both ends of the region. Agrement with the exact 
results of Lai and Sutherland is found at one end of the region. 

1. Introduction 

Low-dimensional spin-lattice systems continue to attract a great deal of attention because 
they possess a variety of interesting properties, some of which are quite unexpected. The 
critical phase of the one-dimensional (ID) spin-f Heisenberg model exactly solved by 
Bethe’s unsurz [I], and the Haldane conjecture of non-zero gap for the ID spin-l Heisenberg 
model [Z], are two classical examples. More recently, the two-dimensional (ZD) systems with 
various couplings and lattice structurs [3], including those relevant to the high-temperature 
superconductors [4], have been under intensive study. 

For the case of ID spin-1 systems, the Heisenberg-biquadratic model is particularly 
interesting. There are some exact results available for the model at several coupling 
constants [5-8]. Based on these exact results, and other analytical and numerical works 
[9-121, it seems reasonable to assume that there are at least three phases within the 
antiferromagnetic region of the system: the dimerized phase with doubly degenerate ground 
states, the homogeneous, non-degenerate phase with a non-zero energy gap but without 
any conventional symmetry breaking (including the conjectured Haldane phase of the pure 
Heisenberg model), and the trimerized phase in which a threefold periodicity is expected. 
While the dimerized phase has recently been studied by Chubukov [ 101 using a spin-wave 
theory based on a simple dimer state, much attention has been devoted to the non-dqenerate 
phase of the system since Haldane conjectured the existence of a non-zero gap for the pure 
Heisenberg model about ten years ago [Z]. Despite the early works of Lai and Sutherland 
181, and a simple valence-bond (VB) analysis [ l l ]  and a recent finite-size calculation [12], 
the trimenzed phase, if it exists, is not well understood, particularly with regard to its 
long-range order and excitations. 

In this article I intend to investigate these problems by the use of a spin-wave theory. 
I first discuss the trimerization of the spin-1 system in terms of VB configurations. As 
discussed in [ll], it is found that in addition to the dimerization and the homogeneous, 
non-degenerate configurations, the spin-1 system has a strong tendency to trimerize also, 
producing a sequence of spin-singlet states formed from every three adjacent atoms. I then 
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develop a spin-wave theory based on this trimer VB state and obtain the energy spectra 
for the excitations. Based on these spectra, I discuss the stability of the trimerization for 
various values of the coupling constants. It should be stressed that this spin-wave theory is 
inspired by the similar technique developed in 1979 by Parkinson [13] who focused on the 
ID spin-; Heisenberg model. He used a simple dimer state as his model state and was able 
to obtain a triplet excitation, in agreement with the exact result [I]. 

The outline of this article is as follows. In section 2 a brief review of the exact results 
of the spin-1 Heisenberg-biquadratic model is given. Then the three representative VB 
configurations are discussed. Section 3 is devoted to the three-atom system in the spin-I 
case. The spin-wave theory based on the simple trimer configuration is developed in detail 
in section 4. The excitation spectra are derived and a non-zero energy gap is predicted. 
Comparison with the exact results [8] of Lai and Sutherland at one of the critical points is 
made. I conclude this article with a discussion in section 5. 

2. The model and the valence bonds 

The ID spin- 1 Heisenberg-biquadratic Hamiltonian is given by 

N N 

H = c o s e C s , .  + s i n E C ( S , .  s,,I)* (2.1) 
,=I  i= l  

where the sums are over all lattice sites with the usual periodic boundary condition, 
Si are spin vectors with [Si1 = 1, obeying the usual angular momentum commutation 
relationships, and the coupling constants are expressed through the angular parameter 8. 
The antiferromagnetic region is given by -ir < 6' < $7, and the rest is ferromagnetic. 
The pure Heisenberg model is given by 6' = 0. 

There are exact results available for the following coupling constants. At 8 = -$r, 
the exact s o u n d  state and low-lying excited states can be obtained by a partial mapping 
to the spin-; anisotropic model which has the exact solutions by Bethe's ansafz [5]. There 
is a non-zero energy gap and the ground state is doubly degenerate, possibly with a dimer 
long-range order. At 6' = -iz, the system is integrable by Bethe's ansalz and has a 
gapless excitation 161. At tan 0 = f ,  the ground state is given by a simple non-degenerate, 
homogeneous VB configuration [7], details of which are given later; a finite energy gap is 
shown to exist at this point. Finally, at B = ir, the system is again integrable and, most 
interestingly for present purposes, has been shown to have a triple periodicity with a gapless 
excitation at the lattice momenta k = 0 and $7 [SI. 

An exact and complete phase diagram for the system is not known, but it seems 
reasonable to assume that there are at least three phases in the antiferromagnetic region, 
namely, the dimerized, homogeneous (nondegenerate), and trimerized phases. The phase 
transition from the dimerized phase to the non-degenerate phase is likely to be at 6' = -$E 

where the system becomes critical and has a gapless excitation [6]. A finite energy gap 
opens up away from this point in both directions. The pure Heisenberg model (with the 
conjectured Haldane phase) is in the non-degenerate phase region. Both dimerized and non- 
degenerate phases have a double periodicity. The field-theory approach [9]  based on the 
Wess-Zumino-Witten model and the dimerized spin-wave theory [IO] both seem to agree 
with this picture. It is interesting to note that the massive dimerized phase was conjectured 
[9] before the exact results [SI were available at 6' = - ; E .  
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--e- Figure 1. The threesimple VR stales: (a) homogeneous. 
(b) dimer. and (e) trimer. A bar represents a VB defined 

(c)  by equation (2.4). 

However, the transition from the non-degenerate phase to the trimerized phase, if it even 
exists, is far from clear. A recent finite-size calculation U121 does confirm the existence of a 
finite region in which the system possesses a triple periodicity, but this work also supports 
the result that the system is gapless in this region. This is contrary to the conclusion of [ l  I ]  
whose authors believe the trimerized phase to be massive. 

The possible three antiferromagnetic phases mentioned are well represented by the three 
simple corresponding VB configurations, i.e., homogeneous, dimer, and kimer states. In 
fact, the study of spin systems in terms of VB configurations has a long history [14]. It has 
resurged [7,15-181 since Haldane's conjecture [2] and the discovery of high-temperature 
superconductors. In [ I l l  a discussion of trimerization in terms of VB configurations was 
perhaps first made. For completeness, some of the ideas are repeated here. 

In any discussion of VB configurations, it is useful to express the spin operators in terms 
of two pairs of Schwinger boson operators as 

S+ = afb S- = ab' SL = 4 (a'a - b'b) (2.2) 

where a, a+ and b, b+ obey the usual boson commutation relations. 

with spin 
A VB is simply a spin-singlet configuration. For example, a system of two atoms each 

has the ground state which can be represented by a VB as 

1 % )  =CAP) = I fL) - I .It) 

C? 'J E a+bT - a:b+. 

(2.3) 

(2.4) 

where 10) is the vacuum state of the bosons, the spin-f up and down states are represented 
by the obvious notations, and the VB operator CG is defined by 

A VB configuration for a system of N atoms each with spin S is formed by connecting each 
atom with 2s bonds. It has been shown that all VB states are in the sector of S m ~  = 0, 
and the ground state of the system is given by a linear combination of all independent VB 
configurations without bond crossing [7,15,171. 

The three representative VB configurations shown in figure 1, where a bar represents 
a VB defined by equation (2.4). It is clear that the homogeneous state has correlations 
of arbitrary long range (exponential-decay function [7]), but the correlation lengths of 
dimer and trimer Configurations are very short, only two and three lattices respectively. 
Furthermore, the homogeneous configuration is obviously non-degenerate, while dimer and 
trimer configurations have double and triple degeneracies respectively, and the translational 
symmetry is broken in both the dimer and trimer states. 
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In figure 1, a single double-bond configuration in fact gives the singlet ground state of 
the two-atom spin-l system, i.e. 

102) = (C,ylO) = 2(11 - 1) + I - 1 1) - 10 0)) (2.5) 

where in the last equation, I have used the three Sz values (0, i l )  to denote the single-atom 
states of spin 1. Also, a single threebond configuration gives the singlet ground state of 
the thee-atom system, i.e. 

1 % )  ciz +C+C+IO) 23 31 = 2(]01 - 1) + I 1  - 10) + I  - 101) - 10- 11) - 1  - 110) - 110- 1)). 

(2.6) 

As emphasized in [ 11 1, this threebond configuration is an eigenstate of all three spin-paired 
operators, SI . S,, 5 2  . Ss, and Ss . SI. 

The homogeneous, dimer, and trimer VB states in figure I ,  denoted as IH), ID) and IT) 
respectively, can be written in terms of C:i as 

Taking theses three VB states as trial wave functions, it is  a straightforward calculation 
to obtain the corresponding energy expectation values as a function of 8. They are given 
by [7], [IS] and [ I l l  respectively: 

-$cost? +?.sine (homogeneous) 

-a cos e + t sin e 
3 - (  N - - c o s ~ + $ s i n ~  (dimer) (2.10) 

(trimer). 

For completeness, these values are shown in figure 2 as a function of 8 ,  together with the 
numerical results obtained by extrapolating the data of the finite-size exact calculations of 
Parkinson [19]. We note that the homogeneous VB state is the exucl ground state for the 
Hamiltonian (2.1) at tan8 = 4 [7]. The dimer state has lower energy than that of the 
homogeneous state for 0 < tan-'(-# N -26.6"; for larger 0, however, the homogeneous 
state has lower energy. At even larger 8, it is interesting to see that the trimer state has the 
lowest energy. This occurs when 8 z tan-'(:) = 36.9". As can be seen from the figure, 
the lower envelope of the three curves is quite close to the 'exact' results over the entire 
antiferromagnetic region. This crude approximation certainly seems to give a clear picture 
for the phase diagram of the spin-l system, so far as the ground-state energy is concerned. 
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Figure 2. The expectation values Eo 
of the ID spin-1 Heisenberg-biquadratic 
Hamiltonian with respect to the three 
simple VB states, i.a, homogeneous (dotted 
curve). dimer (short-dashed curve), and 
lrimer (long-dashed curve). shown as 
functions of the coupling panmeter 0 in 

?r/2 the antiferromagnetic region. Also shown 
are the ‘exact’ results of [I91 (full curve). 

lr/4 

r =  I 2 3 Figure 3. Trimer index IakUings for equation (4.1). 

Of come,  the precise locations of the critical points given here are not to be trusted because 
of the gross simplification. 

I should also point out that the trimer VB state has a feature which is not shared by 
the other two: it contains no Nee1 state configurations, as can be seen from equation (2.6). 
In terms of the three single-atom states, a N€el state of spin-I chain is simply given by 
11 - 11 - 11 - 1 . . .), without any Sz = 0 state. Furthermore, every term in the trimer VB 
state has an equal number of Sz = 0, i1 states. This feature certainly reminds us of the 
exact solution of Lai and Sutherland 181 at B = $I, where the ground state is given by all 
possible permutations of the three single-atom states, and hence the N&I state is not present. 
One also notices that the spin-; and other half-odd-integer-spin systems do not favour this 
trimer configuration because they cannot form a singlet-spin state with three atoms. 

From the above analysis, it is clear that for the extended spin-I chain the trimer VB 
state is a good model state for study of possible trimerization; any additional correlations 
in the system can then be built upon this trimer model state. This is exactly analogous to 
the case for the dimerized system where the dimer VB state should be used [IO]. 
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3. Three-atom system 

Since an atom of spin 1 has three states with S' = 0 and rtl respectively, a threeatom 
system has 33 (= 27) states. With Sl,,l (Smml 5 SI + Sz + S3) and S,b,, as good quantum 
numbers, these 27 states can be obtained in terms of the three single-atom states by a 
simple diagonalization procedure. It is found that each state with S,, = 1 has a triplet 
'accidental' degeneracy, and each state with S n r ~  = 2 has a doublet 'accidental' degeneracy. 
Corresponding to S,,l = 0, 1, 2, and 3, the eigenvalues of the three-atom Hamiltonian, 
SI . S2 + S2 . S3 + S3 . SI, are -3, -2,O, and 3 respectively. 

The following is a list of those 27 states, In) with n = 1,2,  . . , , 27, with the prime 
and double primes indicating the degenerate states, all normalized and orthogonal to one 
another: 
~1)~[00)=(1/&)(~0-11)+~-110)+[10-1)-101-1)-11-10)-1-101))  

12) EE 11-1) = (1/~)(I-100)+~0-10)+~00-1)-21-1-11)-21-11-1)-211-1-1)) 

13) = 11 - 1)' = (I/Zv%)(l- lOO)+lO- 10) -2100- 1)-21- 1 - 1 I )+  1 - 11 - l)+I 1- 1 -I))  

14) [ I  - 1)" = $(I - 100) - IO- IO) - I - 11 - 1) + II - 1 - 1)) 
IS) = 110) = (1/~)(31000) - I1 -10) - 1  - 101) -101 - 1) -I- 110) -110- 1) - 10- 11)) 

~6)~~l0)'~(1/2fi)(2~1-l0)+2~-110)-~~~-l)-~~-11)-~0l-~)-~-1~l)) 
17) E 110)" = +(I10 - 1) + I - 101) - I01 - 1) - 10- 11)) 

IS) = 111) = (l/&)(IlOO) +lolo)+ [Ool) -2111 - 1) -211 - 11) -21 - 111) 

[IO) G 111)" = +([loo) - 1010) - 11 - 11) +I - 111)) 
~ l 1 ) ~ ~ 2 - 2 ) = ~ 1 / & ) ( ~ - l 0 - 1 ) + ~ 0 - 1 - 1 ) - 2 ~ - 1 - 1 0 ) )  
~ l 2 ) ~ ~ 2 - 2 ) ' = ( l / ~ ) ( ~ o - l - l ) - ~ - l o - l ) )  

19) 111)' = (l/2fi)([l00) + 1010) - 21001) - 2111 - 1) + I1 - 11) + I - 111)) 

113) = 12-1) = (1/2v%)(2[00-1)-[0-10)-~-100)-2~-1-11)+~-11-1)+~1-1-1)) 

~ 1 4 ) ~ ~ 2 - 1 ) ' = ~ ( 1 0 - 1 0 ) - ~ - 1 0 0 ) - [ - 1 1 - 1 ) + 1 1 - 1 - 1 ) )  

115) z 120) = ;(IO1 - I) + 110- 1) - 1  - 101) -10- 11)) 

116) ~ ~ 2 0 ) ' = ( l / 2 ~ ) ( 2 ~ 1 - 1 0 ) - 2 ~ - 1 1 0 ) + l 1 0 - 1 ) - [ - 1 0 1 ) + ~ 0 -  11)-101 -1)) 
~ 1 7 ) ~ ~ 2 1 ) = ( 1 / 2 & ) ( ~ 0 1 0 ) + ~ 1 0 0 ) - 2 ~ 0 0 1 ) + 2 ~ 1 1 - 1 ) - [ l - l 1 ) - ~ - 1 1 1 ) )  

118) = ]21)'= +([loo) - IOIO) + 11 - 11) - 1  - 111)) 

120) EE 122)' = (I/&!j(llOl) - 1011)) 
119) 122) = (1/&)(21110) - 1101) -1011)) 

121) 
122) = 13 - 2) = (l/&)([O - 1 - I )  + [ - 10 - I )  + I - 1 - IO)) 
123) = 13- 1) = (I/~)(2~00-1)+2[0-10)+21-100)+~1-1-1)+~- 1- 11)+1-11 - I ) )  
124) 5 130) = (l /f i)(Z[OOO)+[ - lOl)+lOl- l )+j l -  10) +110- I)+lO- 11)+1- 1 IO)) 
125)=13 1)=(1/~)(2~001)+2~010)+2~1~)+1-1~1)+111-l)+~1-11)) 

126) 
127) E 133) = 11 11) 

13 - 3) = I - 1 - 1 - 1) 

132) = (l/&)(lOll) + 1101) + 1110)) 
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where in each equation the two arguments in the second Dirac notations are the values 
of Storal and S&, respectively, and the Dirac notations with three arguments represent a 
threeatom state with the corresponding three S; values. 

In a matrix representation, these 27 states can be represented by a column mahix with 
a single non-zero element, and any single-atom spin operator can therefore be written as a 
27 x 27 matrix. There are nine such operators, i.e., S;,  S: with i = 1, 2, 3. Following 
Parknson [13], I decompose these spin operators by introducing a new set of 27 x 27 
matrices, A",,,,, which have a single non-zero element (unity) on the nth row and mth 
column, i.e., (n'lA,,,,,,lnz') = &,&,,,,,,,. The physical meaning of an A",,,, operator is 
obvious: it transforms state Im) into state In), i.e., A,,,lm) = In). For example, An,,,, 
with n , m  = 1, 5 ,  6, 7 ,  15, 16, 24 are operators which leave S&, unchanged; and 
with n = 2, 3, 4, 13, 14, 23 and An,l with n = 8, 9, 10, 17, 18. 25 are operators which 
increase S&, by a unit, etc. One can see also that the diagonal operators, An,", are the 
usual projection operators. 

The single-atom spin operators can then be written by linear combinations of A,,,,,, 
operator. For example, Sg is given by, 

s; = -J- 213Ai.7 - 4Az.z + +&A23 + (1/&)Az,i3 + f&A3,z - bA3.3 + iA3,13 - fA4.4 

- fA4.14 + j2jA5.15 + ( l / V % 6 , 1 5  - ( ~ / & A , , I  - (l/&A7,16 f fA8.8 

- f d A 8 . 9  + (l/&)A8,17 - $z/JAs,s + bA9,9 t fA9,17 + fAl0.10 

- f A i o , ~ ~  - fAt i , i i  - f f i A i i , m  - Aiz , iz  + ( 1 / 6 A l 3 , 2  

+ $413.3 - hAia.is - ( 4 / 3 6 A 1 3 2 3  - f A w 4  - iA14,14f  ( 2 / f i ) A i s , s  

+ ( 1 / ~ ) A i ~ . 6 - ~ A i s , z 4 - ( ~ / ~ ) A i 6 , 7 + ( 1 / ~ ) A i 7 , ~ + f A 1 7 , 9 + ~ ~ 1 ~ . ~ 7  

- (4/3z/J)Ai7.u - fAi8,10 + fAis,is + fAn,19.-  ffiAi9.26 

+Azo.za - Azi,zl - f f iA22.11 - 7Azz.z~ - (4/3&)Au,13 

- 7.423.23 - m A u l . 1 5  - (4/3J?L4u.i~ + f A u . u  - 4fiA26.19 

2 

1 

+ fA26.26 f A27.27. (3 .1 )  

Similar formulae are easily derived for all other single-spin operators. 
Conversely, each A,,m can be expressed in terms of the single spin operators, in terms 

of which they are obviously nonlinear. For example, one can express A I , !  for this trimer 
spin-1 system as 

Ai, ]  = $S123(6+ Siu - %) (3.2) 

with 9123 defined by Si23 SI . S2 + 272. S3 + 4 .  SI. It is in this sense that I refer to these 
An,,,, matrices as composite operators. These composite operators have simple commutation 
relations 

[An,,, Ax.11 = An,/&n,k - At,m6n,t. (3.3) 

The spin-wave theory of trimerization is developed in the following section, using these 
An,m matrices, and their commutation relations, equation (3.3). 
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4. Spin-wave theory 

In the previous section, the single spin operators are expressed in terms of 27 x 27 matrices 
and then decomposed into linear combinations of the so-called composite operators, A,,,,,,. 
The original Hamiltonian, equation (2.1), can accordingly be expressed exactly in terms of 
these composite operators. It is in this form that the approximation of the spin-wave theory 
is made. 

Firstly, I introduce the trimer index as shown in figure 3. Equation ( 2 1 )  is then written 
as 

r=l 

H, = cose[(sl . Sz)(r)  + (4 . sd(r)I + sin8[(sl . Sz)'(r) + (s2 . Sd2(r)1 (4.1) 
H,,+, = coseS3(r) . s,(r + 1 )  + sin@[s,(r). s I ( r  + I ) ] ' .  

where all the single-spin operators should be expressed in terms of An,,,, operators, and 
I have used the notation (Si . S,)(r) S;(r) . Sj(r )  for simplicity. After this is done, 
equation (4.1) is obviously a very long expression. I therefore will not list it explicitly. 

4.1. Equatiom of motion 

Following Parkinson [13], I derive the equations of motion for all composite operators. 
Consider first those operators which leave S&, unchanged, i.e., A I , ~ , A " , ,  and An,m with 
n,m = 5 ,  6, 7, 15, 16, 24. 

Since the equations are still very involved, I adopt a truncation scheme to simplify the 
procedure of the spin-wave approximation. This is to disregard those trimer states in the 
final expression of equation (4.1). which have S,,, =- 1 (i.e., states 11 1)-127)); hence all 
matrices involved are reduced to 10 x 10. This means that in equation (4.1) only those A",,,, 
with n, m < 10 are retained. Within this truncation approximation, those operators which 
leave Skd unchanged are An,l,  AI,^ and An,m with n ,  m = 5, 6,  7. The justification for 
this truncation scheme lies in the fact that for a threespin system as discussed in section 3, 
the energy difference between the singlet state and those states with Stod = 1 is one unit, 
whereas the energy difference between the singlet state and those states with Smtd = 2 or 3 
is three or six units respectively. 

Using equation (3.3), I derive the following equation of motion for As,] with the 
eigenvalue denoted by w,  after disregarding any A",,,, with n > 10 or m > 10: 

@A;,] = [Hs A;,,] = [Hr, A;,,] + [ f f r - i , r ,  Ag.11 + [ H r , r t 1 ,  Ai.11 (4.2) 

where 

[H,, A;, , ]  = cosB($A;,, + ;&A& - m A ; , , )  + s i n B ( y A ; , ,  - $&A:,, + m A ; , , )  

(4.3) 

and 
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+ iS;(r - 1)[-A;,3 + (l/&)& - $&A',,, - S,/@Ab,l - m A i , , l I l  

- sinO(IS;(r - 1)12[$A;,l + (1/3&)A;,, + (1 / f i )A5,11 

+ i(s;s:)(r - 1) 

x [-+Ai,9 + (1/2&)A2.10 + &jZ/zAS,, + )"A;,, + ( l / 2 & ) A ~ , l l  

+ f(s:s:)(r - 1) 

x - (1 /2 f i )A \ ,10  + 6 f i A i . l  - (1/3V%)A;,l - ( l /v '%)A~, l l  

+ f(s;s;)(r - 1) 

x 

+ +(s;s<)(r - 1) 

x 

+ t(s:s;)(r - 1 )  

+ (1/2d?)A;,,, - &./ZA;,l - S m A ; , ,  - 2 m A ; , , l l  

- ( 1 / 2 ~ 6 ) A ; , ~  - &&A;,, + (1 /3~ '%)A i ,~  + (I /W'%)A~~,~I 

x [-$A;,, + ( l / h ) A ; , 6  - (I/&)A;,7 - (1/3&)A2,1 - (1 / f i )A; ,11 

+ i(s;s:)(r - 1) 

x [-$A;,,  - (1/&)A;,6 + (~/%'%)A;,J - (1/3v%Ak,1 - ( l / f i ) A G , ~ I l  

(4.4) 

where for simplicity I still keep the notations for those single spin operators Si(r - 1) with 
i = 1,2,3.  The equation for [H,,,+l, A;,,] is derived in similar fashion. 

with n ,  m = 5, 6, 
7 respectively. Again, I do not list them here. 

4.2. Spin-wave theory 

Now I apply the approximation of the spin-wave theory to all these equations. This spin- 
wave theory, referred to as the decoupling approximation by Parkinson [13], consists of 
replacing each operator in any product A;.jAL:l, in turn, by its expectation value in the 
simple bimer VB model state, IT), given by equation (2.9). Obviously, the only non-zero 
expectation value is (TIA;,, IT) = 1. After expressing the corresponding operators in terms 
of these A,,,m operators, one has (Tl(Sf)2jT) = 4, and (TlS:SJT) = (TlS,yS:lT) = :, 
with i = 1, 2,3. In this spin-wave theory equation (4.2) and the similar equations for A6.1 
and A7.1 are then reduced to, 

@A;,, N $aA;,, + @bAi,, - m b A ; , ,  

I have also derived the equations of motion for A6.1, A7.1 and 
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where the four constants a, b, c and d are defined by 

a cos0 + 5 sin0 b cos0 - sin0 

c = ;cos0 +sin0 d E cos0 - +sin0 

and where I have also used the fact that the equations of motion for all other operators, i.e., 
A",,,, with n,  m = 5,6,7, give zero within the spin-wave approximation. For example, the 
equations of motion for A5.6 and A5.7 read. respectively 

OAs.6 N 0 d g . 7  0. (4.7) 

The equations of motion for the corresponding conjugate operators, A1,5, A1.6 and A1.7, 
are derived simply by the fact that [ H ,  A;,,] = - [ H ,  with n = 5,6,7. One therefore 
has a set of six coupled equations. 

Before I solve this set of six equations for the eigenvalue o, it is worthwhile discussing 
the physical implications of the spin-wave approximation given above. According to the 
definitions in section 3, when An,, acts on the trimer state Il), it transforms 11) into state 
In). Therefore, within the spin-wave theory in which the trimer VB state IT) is taken as 
the model state, operators A5.1, A6.1, A7.1 can be considered as the 'raising' operators: they 
increase Stod by one unit. Similarly, their conjugates, Al.5, A1.6, Al.,. correspond to the 
'lowering' operators. Any other operators that also leave S;owl unchanged are considered as 
higher-order operators. For example, one can always write A5,6 as A5.6 = A s ~ A l . 6 ,  hence 
it is quadratic. Therefore, it is quite natural that the equations of motion for A5.6 and other 
higher-order operators give zero value, as given by equation (4.7). One can certainly draw 
an analogy here with the traditional spin-wave theory of Anderson [ZO], where the model 
state is the classical N6el state and the spin-raising (lowering) operators increase (decrease) 
Skd respectively. 

4.3. Energy spectra 

After introducing the new variables, 

X*(r) = A;,l k A;,5 Y*(r)  A k l  i~ A;,6 Z*(r) s A;,l * A ; , ,  (4.8) 

and their Fourier transformations 

etc. where one has used the fact that the spacing for the trimer VB configuration is three with 
the lattice constant chosen as unity, one can reduce the six equations (i.e., equations (4.5) 
and their corresponding Hermitian conjugates) into three equations. The corresponding 
eigenequation is therefore third order in oz. 

After some considerable algebra, this eigenequation can be derived as 

3 6 ~ ~  + 36~2~' + a l& + 2ao = 0 (4.9) 
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where E = wz and the coefficients are defined by 

a=-7cos28-13 

a ,  ( 1 9 2 ~ 0 ~ 4 8  - 156sin40 +240cos20+360sin28 -240)cos3k 

+ 73 cos 40 - 264 sin 48 - 990 cos 28 + 360 sin 28 + 1225 

ag ( 5 1 ~ 0 ~ 6 8  - 93sin68 - 168cos48 + 174sin48 

- 99 cos 28 - 219 sin 28 + 120) cos 3k 

- 151 cos 68 + 18 sin 68 + 118 cos 48 - 24 sin48 

+99cos28+54sin28- 170. 

The solutions of equation (4.9) as functions of the coupling parameter 8 are discussed 

(i) 8 = $7. This is the LaiSutherland [SI model where the exact solution is available. 

below. 

In this case, equation (4.9) becomes 

( E  - S)[E' - 5s + 2(1  COS^^)] = 0. (4.10) 

One obvious solution to the above equation is the constant, E = 8. The other two are given 
by 

~ + ( k ) =  $ ( 5 + J 1 7 + 8 ~ 0 ~ 3 k )  (4.1 1) 

which depend on the wave vector k. Recalling that wz = E,  after discarding the unphysical 
negative solution, o = -A, one obtains the low-lying spectrum, wr: = m, which is 
gapless at k = 0 and Zx, and has a spin-wave velocity of 3/& 5 1.342. This spectrum 
compares well with the exact result [8] which has a spin-wave velocity of Y 1.481. 
However, the other gapless spectrum with a periodicity of $x from the exact result [8] is 
not present in this simple spin-wave theory. 

(ii) 8 = TR. This is the phase transition point, beyond which, i.e., for 8 > i x ,  the 
system is ferromagnetic. Equation (4.9) then reduces to 

I 

E ( ~ E '  - 180~ - 72 cos 3k + 572) = 0. (4.12) 

One sees immediately that there is a constant zero spectrum, wk = 0, as expected for the 
corresponding ferromagnetic phase transition, but with two other spectra which are massive. 

(iii) $ x  c 8 e f x .  In this region, the low-lying spectrum obtained from equation (4.9) 
always has a non-zero gap with identical minima at k = 0 and $ x .  For example, at 8 = i x ,  
equation (4.9) becomes 

E3 - F E z  f$j[(516&-912)COS3k+624&+3367]6 

- $[ (267& - 609) COS 3k - 42-h + 8591 = 0. (4.13) 

The minimum gap is given by k = 0 (or $r) with the value EO N 0.315. 
(iv) Other regions. For other couplings immediately beyond the region $ x  < 8 < .$I, 

i.e., for 8 < $ x  or 8 > f x ,  the low-lying spectrum obtained from equation (4.9) becomes 
imaginary, clearly indicating the unstability of the trimerized state. Therefore, one expects 
a phase change at both 0 = $I and $r. 
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From the above results, a clear picture within the spin-wave theory emerges: the spin-1 
system is trimerized in the region given by i z  < B c and becomes critical at both ends 
of the region. While at 8 = iz this picture agrees with the well known fact that the system 
becomes ferromagnetic, it also indicates that the transition from the trimerized phase to any 
other antiferromagnetic phase, possibly the non-degenerate phase, is at 6' = 4.. 

I should also point out that there are some other points and regions of 6' where the 
low-lying spectrum obtained from equation (4.9) remains real. These include 0 = -$z 
(or an). However, as 6' either increases or decreases, the low-lying spectrum becomes 
imaginary One expects that for higher-order approximations beyond the simple spin-wave 
theory employed here, this singular point may become unstable. After all, the exact solution 
[6] at 6' = - i z  clearly shows that the system has a double periodicity. Also, in the region 
of -an c B c -fz, the spectra are identical to those in the region of $r c B c fz. This 
is simply due to the fact that the Hamiltonian has a symmetry H + -H when 6' --f B + z. 

4.4. Equations of motion for other operators 

Finally, I consider the equations of motion for those operators that change S;o,, by -1, i.e., 
A,,, with n = 2, 3, 4, A,,m with n = S. 9, 10, and many other higher-order operators, e.g., 
Az.5, A z , ~ .  A2.7, etc. The conjugates of these operators correspond to those which increase 
S& by one. 

Within the similar spin-wave approximation, the energy spectra obtained from these 
operators are in fact identical to those obtained above, i.e., equation (4.9). In other words, 
the spectra given by equation (4.9) are in fact triplet excitations. This is not surprising 
since the model state of the spin-wave approximation developed here, IT), is in the sector 
of Sod = 0, and one expects the low-lying excitation to be triplet with Stom, = 1. This is 
similar to the cases for the spin-; Heisenberg model studied by Parkinson 1131, and for the 
dimerized spin-wave theory of Chubukov [lo], but contrasts with the traditional spin-wave 
theory I201 where the model state is the N6el state and the excitation is definitely doublet. 

5. Discussion and conclusions 

In this article I have discussed the possibility of trimerization of the spin-I system in 
terms of VBS. I introduced the so-called composite operators, A,,,, which are the proper 
operators for dealing with problems of spin-1 trimerization. A spin-wave theory based on 
these composite operators has been developed, taking the simple trimer VB state as the 
model state. 

The application of this spin-wave theory under a truncation scheme to the ID spin-1 
Heisenberg-biquadratic model confirms the existence of the trimerized phase over an 
extended region of couplings. In this trimerized region, a non-zero energy gap for the 
triplet excitation is predicted within the spin-wave theory. This agrees with the conclusions 
of [ I l l  but contradicts those of the finite-size calculation of [12], which claims that the 
trimerized region is gapless. Agreement with the exact results of Lai and Sutherland [SI is 
also found at one end of the region. 

It is possible to extend and reformulate the current spin-wave theory so that the ground- 
state energy, order parameter, and other ground-state properties are also obtained. This can 
be achieved by the method of bosonization for those composite operators. For the problem 
of the dimerized phase for the ID spin-f system, it  has already been done [21]. Chubukov 
[IO] has also provided another technique for the dimerization problem by employing a 
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beautiful boson transformation similar to the well known Holstein-Primakoff transformation. 
However, this is beyond the scope of this paper for the trimerization problem. In any 
case, it is perhaps more interesting to generalize the current spin-wave theory to higher 
dimensionalities, particularly the 2D spin-I systems with various couplings and/or lattice 
structures. 

In order to provide a more convincing argument for the existence of the extended 
region where the spin-1 system is trimerized and has a non-zero energy gap, it is necessary 
to include those excitations with Stotd 5 1 and, more importantly, to go beyond the simple 
spin-wave approximation made in this paper. In fact, a microscopic analysis based on these 
composite operators can be formulated, particularly by applying a powerful many-body 
technique, namely the coupled-cluster method, which has already been very successfully 
applied to various spin models with an anticipated N6el order [22].  
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